首页> 外文OA文献 >Prediction of subsidence due to underground mining by artificial neural networks
【2h】

Prediction of subsidence due to underground mining by artificial neural networks

机译:人工神经网络预测地下开采沉陷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alternatively to empirical prediction methods, methods based on influential functions and on mechanical model, artificial neural networks (ANNs) can be used for the surface subsidence prediction. In our case, the multi-layer feed-forward neural network was used. The training and testing of neural network is based on the available data. Input variables represent extraction parameters and coordinates of the points of interest, while the output variable represents surface subsidence data. After the neural network has been successfully trained, its performance is tested on a separate testing set. Finally, the surface subsidence trough above the projected excavation is predicted by the trained neural network. The applicability of ANN for the prediction of surface subsidence was verified in different subsidence models and proved on actual excavated levels and in levelled data on surface profile points in the Velenje Coal Mine. (C) 2003 Elsevier Science Ltd. All rights reserved.
机译:除了经验预测方法外,还可以使用基于影响函数和机械模型的方法,将人工神经网络(ANN)用于地面沉降预测。在我们的案例中,使用了多层前馈神经网络。神经网络的训练和测试是基于可用数据的。输入变量表示提取参数和关注点的坐标,而输出变量表示地面沉降数据。在成功训练了神经网络之后,将在单独的测试集中测试其性能。最后,通过训练后的神经网络可以预测投影开挖上方的地面沉降槽。在不同的沉降模型中验证了人工神经网络在地面沉降预测中的适用性,并在Veleenje煤矿的实际挖掘水平和地面剖面点的平整数据中得到了证明。 (C)2003 Elsevier ScienceLtd。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号